
Bohmian Mechanics

First published Fri Oct 26, 2001; substantive revision Mon Mar 27, 2017
Bohmian mechanics, which is also called the de Broglie-Bohm theory, the pilot-wave 
model, and the causal interpretation of quantum mechanics, is a version of quantum 
theory discovered by Louis de Broglie in 1927 and rediscovered by David Bohm in 
1952. It is the simplest example of what is often called a hidden variables 
interpretation of quantum mechanics. In Bohmian mechanics a system of particles is 
described in part by its wave function, evolving, as usual, according to Schrödinger’s 
equation. However, the wave function provides only a partial description of the 
system. This description is completed by the specification of the actual positions of 
the particles. The latter evolve according to the “guiding equation”, which expresses 
the velocities of the particles in terms of the wave function. Thus, in Bohmian 
mechanics the configuration of a system of particles evolves via a deterministic 
motion choreographed by the wave function. In particular, when a particle is sent into 
a two-slit apparatus, the slit through which it passes and its location upon arrival on 
the photographic plate are completely determined by its initial position and wave 
function.

Bohmian mechanics inherits and makes explicit the nonlocality implicit in the notion, 
common to just about all formulations and interpretations of quantum theory, of a 
wave function on the configuration space of a many-particle system. It accounts for 
all of the phenomena governed by nonrelativistic quantum mechanics, from spectral 
lines and scattering theory to superconductivity, the quantum Hall effect and quantum
computing. In particular, the usual measurement postulates of quantum theory, 
including collapse of the wave function and probabilities given by the absolute square
of probability amplitudes, emerge from an analysis of the two equations of motion: 
Schrödinger’s equation and the guiding equation. No invocation of a special, and 
somewhat obscure, status for observation is required.
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1. The Completeness of the Quantum Mechanical Description
Conceptual difficulties have plagued quantum mechanics since its inception, despite 
its extraordinary predictive successes. The basic problem, plainly put, is this: It is not 
at all clear what quantum mechanics is about. What, in fact, does quantum mechanics 
describe?
It might seem, since it is widely agreed that any quantum mechanical system is 
completely described by its wave function, that quantum mechanics is fundamentally 
about the behavior of wave functions. Quite naturally, no physicist wanted this to be 
true more than did Erwin Schrödinger, the father of the wave function. Nonetheless, 
Schrödinger ultimately found this impossible to believe. His difficulty had little to do 
with the novelty of the wave function:
That it is an abstract, unintuitive mathematical construct is a scruple that almost 
always surfaces against new aids to thought and that carries no great message. 
(Schrödinger [1935] 1980: 327)
Rather, it was that the “blurring” that the spread out character of the wave function 
suggests “affects macroscopically tangible and visible things, for which the term 
‘blurring’ seems simply wrong”.

For example, in the same paper Schrödinger noted that it may happen in radioactive 
decay that the emerging particle is described … as a spherical wave … that impinges 
continuously on a surrounding luminescent screen over its full expanse. The screen 
however does not show a more or less constant uniform surface glow, but rather lights
up at one instant at one spot …. (Schrödinger [1935] 1980: 327–328) And he 
observed that one can easily arrange, for example by including a cat in the system, 
“quite ridiculous cases” with the ψ-function of the entire system having in it the living
and the dead cat (pardon the expression) mixed or smeared out in equal parts. 
(Schrödinger [1935] 1980: 328) It is thus because of the “measurement problem”, of 
macroscopic superpositions, that Schrödinger found it difficult to regard the wave 
function as “representing reality”. But then what does? With evident disapproval, 
Schrödinger observes that the reigning doctrine rescues itself or us by having recourse
to epistemology. We are told that no distinction is to be made between the state of a 
natural object and what I know about it, or perhaps better, what I can know about it if 
I go to some trouble. Actually—so they say—there is intrinsically only awareness, 
observation, measurement. (Schrödinger [1935] 1980: 328)

Many physicists pay lip service to the Copenhagen interpretation—that quantum 
mechanics is fundamentally about observation or results of measurement. But it is 
becoming increasingly difficult to find any who, when pressed, will defend this 
interpretation. It seems clear that quantum mechanics is fundamentally about atoms 
and electrons, quarks and strings, not those particular macroscopic regularities 
associated with what we call measurements of the properties of these things. But if 
these entities are not somehow identified with the wave function itself—and if talk of 
them is not merely shorthand for elaborate statements about measurements—then 
where are they to be found in the quantum description? There is, perhaps, a very 
simple reason why it is so difficult to discern in the quantum description the objects 
we believe quantum mechanics ought to describe. Perhaps the quantum mechanical 
description is not the whole story, a possibility most prominently associated with 
Albert Einstein. (For a general discussion of Einstein’s scientific philosophy, and in 
particular of his approach to the conflicting positions of realism and positivism, see 
the entry on Einstein’s philosophy of science.)
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In 1935 Einstein, Boris Podolsky and Nathan Rosen defended this possibility in their 
famous EPR paper. They concluded with this observation:
While we have thus shown that the wave function does not provide a complete 
description of the physical reality, we left open the question of whether or not such a 
description exists. We believe, however, that such a theory is possible. (Einstein et al. 
1935: 780) The argument that the EPR paper advances to support this conclusion 
invokes quantum correlations and an assumption of locality. (See the entries on the 
Einstein-Podolsky-Rosen argument in quantum theory and on quantum entanglement 
and information.) Later, on the basis of more or less the same considerations as those 
of Schrödinger quoted above, Einstein again concluded that the wave function does 
not provide a complete description of individual systems, an idea he called “this most 
nearly obvious interpretation” (Einstein 1949: 672). In relation to a theory 
incorporating a more complete description, Einstein remarked that the statistical 
quantum theory would … take an approximately analogous position to the statistical 
mechanics within the framework of classical mechanics. (Einstein 1949: 672) We 
note here, and show below, that Bohmian mechanics exactly fits this description.

2. The Impossibility of Hidden Variables … or the Inevitability of Nonlocality?
John von Neumann, one of the greatest mathematicians of the twentieth century, 
claimed that he had proven that Einstein’s dream of a deterministic completion or 
reinterpretation of quantum theory was mathematically impossible. He concluded that

"It is therefore not, as is often assumed, a question of a re-interpretation of quantum 
mechanics—the present system of quantum mechanics would have to be objectively 
false, in order that another description of the elementary processes than the statistical 
one be possible." (von Neumann [1932] 1955: 325)

Physicists and philosophers of science almost universally accepted von Neumann’s 
claim. For example, Max Born, who formulated the statistical interpretation of the 
wave function, assured us that
No concealed parameters can be introduced with the help of which the indeterministic
description could be transformed into a deterministic one. Hence if a future theory 
should be deterministic, it cannot be a modification of the present one but must be 
essentially different. (Born 1949: 109)
Bohmian mechanics is a counterexample to the claims of von Neumann. Thus von 
Neumann’s argument must be wrong. In fact, according to John Bell, von Neumann’s 
assumptions (about the relationships among the values of quantum observables that 
must be satisfied in a hidden-variables theory) are so unreasonable that the “the proof 
of von Neumann is not merely false but foolish!” (Mermin 1988, fn 8, quoting an 
interview in Omni, May, 1988: 88). Nonetheless, some physicists continue to rely on 
von Neumann’s proof.

Recently, however, physicists more commonly cite the Kochen-Specker Theorem 
and, more frequently, Bell’s inequality in support of the contention that a 
deterministic completion of quantum theory is impossible. We still find, a quarter of a
century after the rediscovery of Bohmian mechanics in 1952, statements such as 
these:
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"The proof he [von Neumann] published …, though it was made much more 
convincing later on by Kochen and Specker (1967), still uses assumptions which, in 
my opinion, can quite reasonably be questioned. … In my opinion, the most 
convincing argument against the theory of hidden variables was presented by J.S. Bell
(1964). (Wigner [1976] 1983: 291)"

Now there are many more statements of a similar character that we could cite. This 
quotation is significant because Wigner was one of the leading physicists of his 
generation. Unlike most of his contemporaries, moreover, he was also profoundly 
concerned about the conceptual foundations of quantum mechanics and wrote on the 
subject with great clarity and insight.
There was, however, one physicist who wrote on this subject with even greater clarity 
and insight than Wigner himself: the very J. S. Bell whom Wigner praises for 
demonstrating the impossibility of a deterministic completion of quantum theory such
as Bohmian mechanics. Here’s how Bell himself reacted to Bohm’s discovery:

"But in 1952 I saw the impossible done. It was in papers by David Bohm. Bohm 
showed explicitly how parameters could indeed be introduced, into nonrelativistic 
wave mechanics, with the help of which the indeterministic description could be 
transformed into a deterministic one. More importantly, in my opinion, the 
subjectivity of the orthodox version, the necessary reference to the “observer”, could 
be eliminated. …
But why then had Born not told me of this “pilot wave”? If only to point out what was
wrong with it? Why did von Neumann not consider it? More extraordinarily, why did 
people go on producing “impossibility” proofs, after 1952, and as recently as 1978? 
… Why is the pilot wave picture ignored in text books? Should it not be taught, not as
the only way, but as an antidote to the prevailing complacency? To show us that 
vagueness, subjectivity, and indeterminism, are not forced on us by experimental 
facts, but by deliberate theoretical choice? (Bell 1982, reprinted in 1987c: 160)"

Wigner to the contrary notwithstanding, Bell did not establish the impossibility of a 
deterministic reformulation of quantum theory, nor did he ever claim to have done so. 
On the contrary, until his untimely death in 1990, Bell was the prime proponent, and 
for much of this period almost the sole proponent, of the very theory, Bohmian 
mechanics, that he supposedly demolished.
Bohmian mechanics is of course as much a counterexample to the Kochen-Specker 
argument for the impossibility of hidden variables as it is to the one of von Neumann. 
It is obviously a counterexample to any such argument. However reasonable the 
assumptions of such an argument, some of them must fail for Bohmian mechanics.
Wigner was quite right to suggest that the assumptions of Kochen and Specker are 
more convincing than those of von Neumann. They appear, in fact, to be quite 
reasonable indeed. However, they are not. The impression that they are arises from a 
pervasive error, an uncritical realism about operators, that we discuss below in the 
sections on quantum observables, spin, and contextuality.
John Bell replaced the “arbitrary axioms” (Bell 1966, reprinted 1987c: 11) of Kochen-
Specker and others by an assumption of locality, of no action-at-a-distance. It would 
be hard to argue against the reasonableness of such an assumption, even if one were 
so bold as to doubt its inevitability. Bell showed that any hidden-variables 
formulation of quantum mechanics must be nonlocal, as, indeed, Bohmian mechanics 
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is. But he showed much much more. (For more detail on Bell’s locality assumption, 
see Goldstein et al. 2011 and Norsen 2011.)

In a celebrated paper he published in 1964, Bell showed that quantum theory itself is 
irreducibly nonlocal. (More precisely, Bell’s analysis applies to any single-world 
version of quantum theory, i.e., any version for which measurements have outcomes 
that, while they may be random, are nonetheless unambiguous and definite, in 
contrast to the situation with Everett’s many-worlds version of quantum theory.) This 
fact about quantum mechanics, based as it is on a short and mathematically simple 
analysis, could have been recognized soon after the discovery of quantum theory in 
the 1920’s. That this did not happen is no doubt due in part to the obscurity of 
orthodox quantum theory and to the ambiguity of its commitments. (It almost did 
happen: Schrödinger 1935, in his famous cat paper, came remarkably close to 
discovering a Bell-type argument for quantum nonlocality. For details see Hemmick 
and Shakur 2012, chapter 4.) It was, in fact, his examination of Bohmian mechanics 
that led Bell to his nonlocality analysis. In the course of investigating Bohmian 
mechanics, he observed that:
in this theory an explicit causal mechanism exists whereby the disposition of one 
piece of apparatus affects the results obtained with a distant piece. …
Bohm of course was well aware of these features of his scheme, and has given them 
much attention. However, it must be stressed that, to the present writer’s knowledge, 
there is no proof that any hidden variable account of quantum mechanics must have 
this extraordinary character. It would therefore be interesting, perhaps, to pursue some
further “impossibility proofs”, replacing the arbitrary axioms objected to above by 
some condition of locality, or of separability of distant systems. (Bell 1966: 452; 
reprinted 1987c: 11)
In a footnote, Bell added that “Since the completion of this paper such a proof has 
been found” (1966: 452, fn. 19). He published it in his 1964 paper, “On the Einstein-
Podolsky-Rosen Paradox”. In this paper he derives Bell’s inequality, the basis of his 
conclusion of quantum nonlocality. (See the entry on Bell’s Theorem. For a 
discussion of how nonlocality emerges in Bohmian mechanics, see Section 13.)

It is worth stressing that Bell’s analysis indeed shows that any (single-world) account 
of quantum phenomena must be nonlocal, not just any hidden variables account. Bell 
showed that the predictions of standard quantum theory itself imply nonlocality. Thus 
if these predictions govern nature, then nature is nonlocal. [That nature is so 
governed, even in the crucial EPR-correlation experiments, has by now been 
established by a great many experiments. The first rather conclusive such experiment 
was that of Aspect (Aspect, Dalibard, & Zanghì 1982). More conclusive still is the 
experiment of Weihs et al. 1998. Very recently there have been several “loop-hole 
free” tests of Bell’s inequality (Giustina et al. 2015; Hensen et al. 2015; and Shalm et 
al. 2015).]
Bell, too, stressed this point (by determinism Bell here means hidden variables):
It is important to note that to the limited degree to which determinism plays a role in 
the EPR argument, it is not assumed but inferred. What is held sacred is the principle 
of “local causality”—or “no action at a distance”…

It is remarkably difficult to get this point across, that determinism is not a 
presupposition of the analysis. (Bell 1981a, reprinted 1987c: 143)
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Despite my insistence that the determinism was inferred rather than assumed, you 
might still suspect somehow that it is a preoccupation with determinism that creates 
the problem. Note well then that the following argument makes no mention whatever 
of determinism. … Finally you might suspect that the very notion of particle, and 
particle orbit … has somehow led us astray. … So the following argument will not 
mention particles, nor indeed fields, nor any other particular picture of what goes on 
at the microscopic level. Nor will it involve any use of the words “quantum 
mechanical system”, which can have an unfortunate effect on the discussion. The 
difficulty is not created by any such picture or any such terminology. It is created by 
the predictions about the correlations in the visible outputs of certain conceivable 
experimental set-ups. (Bell 1981a, reprinted 1987c: 150)
The “problem” and “difficulty” to which Bell refers above is the conflict between the 
predictions of quantum theory and what can be inferred, call it C
, from an assumption of locality in Bohm’s version of the EPR argument, a conflict 
established by Bell’s inequality. C happens to concern the existence of a certain kind 
of hidden variables, what might be called local hidden variables, but this fact is of 
little substantive importance. What is important is not so much the identity of C as the
fact that C is incompatible with the predictions of quantum theory. The identity of C 
is, however, of great historical significance: it is responsible for the misconception 
that Bell proved that hidden variables are impossible, a belief that physicists until 
recently almost universally shared, as well as for the view, even now almost 
universally held, that what Bell’s result does is to rule out local hidden variables, a 
view that is misleading.

Here again is Bell, expressing the logic of his two-part demonstration of quantum 
nonlocality, the first part of which is Bohm’s version of the EPR argument, 
concerning EPRB correlations:
Let me summarize once again the logic that leads to the impasse. The EPRB 
correlations are such that the result of the experiment on one side immediately 
foretells that on the other, whenever the analyzers happen to be parallel. If we do not 
accept the intervention on one side as a causal influence on the other, we seem 
obliged to admit that the results on both sides are determined in advance anyway, 
independently of the intervention on the other side, by signals from the source and by 
the local magnet setting. But this has implications for non-parallel settings which 
conflict with those of quantum mechanics. So we cannot dismiss intervention on one 
side as a causal influence on the other. (Bell 1981a, reprinted 1987c: 149)
As with just about everything else in the foundations of quantum mechanics, there 
remains considerable controversy about what exactly Bell’s analysis demonstrates. 
(For further insight into the various controversies see Maudlin 2014 and Goldstein et 
al. 2011.) Nonetheless, the opinion of Bell himself about what he showed is perfectly 
clear. See Norsen 2011 for a nice overview of Bell’s views on the matter.

3. History
The pilot-wave approach to quantum theory was initiated by Einstein, even before the 
discovery of quantum mechanics itself. Einstein hoped that interference phenomena 
involving particle-like photons could be explained if the motion of the photons was 
somehow guided by the electromagnetic field—which would thus play the role of 
what he called a Führungsfeld or guiding field (see Wigner [1976] 1983: 262 and 
Bacciagaluppi and Valentini 2009: Ch. 9). While the notion of the electromagnetic 
field as guiding field turned out to be rather problematical, Max Born explored the 
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possibility that the wave function could play this role, of guiding field or pilot wave, 
for a system of electrons in his early paper founding quantum scattering theory (Born 
1926). Heisenberg was profoundly unsympathetic.

Not long after Schrödinger’s discovery of wave mechanics in 1926, i.e., of 
Schrödinger’s equation, Louis de Broglie in effect discovered Bohmian mechanics: In
1927, de Broglie found an equation of particle motion equivalent to the guiding 
equation for a scalar wave function (de Broglie 1928: 119), and he explained at the 
1927 Solvay Congress how this motion could account for quantum interference 
phenomena. However, despite what is suggested by Bacciagaluppi and Valentini 
(2009), de Broglie responded very poorly to an objection of Wolfgang Pauli (Pauli 
1928) concerning inelastic scattering, no doubt making a rather bad impression on the 
illustrious audience at the congress.
Born and de Broglie very quickly abandoned the pilot-wave approach and became 
enthusiastic supporters of the rapidly developing consensus in favor of the 
Copenhagen interpretation. David Bohm (1952) rediscovered de Broglie’s pilot-wave 
theory in 1952. He was the first person to genuinely understand its significance and 
implications. John Bell became its principal proponent during the sixties, seventies 
and eighties. For a very good discussion of the history of quantum mechanics, the 
debates about its foundations, and about the reception of Bohmian mechanics in 
particular, see Bricmont 2016. See also Beller 1999.

4. The Defining Equations of Bohmian Mechanics

In Bohmian mechanics the wave function, obeying Schrödinger’s equation, does not 
provide a complete description or representation of a quantum system. Rather, it 
governs the motion of the fundamental variables, the positions of the particles: In the 
Bohmian mechanical version of nonrelativistic quantum theory, quantum mechanics 
is fundamentally about the behavior of particles; the particles are described by their 
positions, and Bohmian mechanics prescribes how these change with time. In this 
sense, for Bohmian mechanics the particles are primary, or primitive, while the wave 
function is secondary, or derivative.

Warning: It is the positions of the particles in Bohmian mechanics that are its “hidden 
variables”, an unfortunate bit of terminology. As Bell writes, referring to Bohmian 
mechanics and similar theories,

Absurdly, such theories are known as “hidden variable” theories. Absurdly, for there 
it is not in the wavefunction that one finds an image of the visible world, and the 
results of experiments, but in the complementary “hidden”(!) variables. Of course the 
extra variables are not confined to the visible “macroscopic” scale. For no sharp 
definition of such a scale could be made. The “microscopic” aspect of the 
complementary variables is indeed hidden from us. But to admit things not visible to 
the gross creatures that we are is, in my opinion, to show a decent humility, and not 
just a lamentable addiction to metaphysics. In any case, the most hidden of all 
variables, in the pilot wave picture, is the wavefunction, which manifests itself to us 
only by its influence on the complementary variables. (1987a, reprinted 1987c: 201–
202)
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Bohmian mechanics is the minimal completion of Schrödinger’s equation, for a 
nonrelativistic system of particles, to a theory describing a genuine motion of 
particles. For Bohmian mechanics the state of a system of N particles is described by 
its wave function ψ=ψ(q1,…,qN)=ψ(q), a complex (or spinor-valued) function on the 
space of possible configurations q of the system, together with its actual configuration
Q defined by the actual positions Q1,…,QN of its particles. (The word “spinor” refers
to a suitable array of complex numbers in place of a single one. Spinor-valued wave 
functions are used in quantum mechanics to describe electrons and other quantum 
particles that “have spin”.) The theory is then defined by two evolution equations: 
Schrödinger’s equation
iℏ∂ψ∂t=Hψ for ψ(t), where H is the nonrelativistic (Schrödinger) Hamiltonian, 
containing the masses of the particles and a potential energy term, and (writing Im[z] 
for the imaginary part b of a complex number z=a+ib) a first-order evolution 
equation,
The Guiding Equation dQkdt=ℏmkImψ ∂kψψ ψ(Q1,…,QN)for Q(t), the simplest ∗ ∗
first-order evolution equation for the positions of the particles that is compatible with 
the Galilean (and time-reversal) covariance of the Schrödinger evolution (Dürr, 
Goldstein, & Zanghì 1992a: 852–854). Here ℏ is Planck’s constant divided by 2π, mk 
is the mass of the k-th particle, and ∂k=(∂/∂xk,∂/∂yk,∂/∂zk) is the gradient with 
respect to the generic coordinates qk=(xk,yk,zk) of the k-th particle. If ψ is spinor-
valued, the two products involving ψ in the equation should be understood as scalar 
products (involving sums of products of spinor components). When external magnetic
fields are present, the gradient should be understood as the covariant derivative, 
involving the vector potential. (Since the denominator on the right hand side of the 
guiding equation vanishes at the nodes of ψ, global existence and uniqueness for the 
Bohmian dynamics is a nontrivial matter. It is proven in Berndl, Dürr, et al. 1995 and 
in Teufel and Tumulka 2005.)

For an N-particle system these two equations (together with the detailed specification 
of the Hamiltonian, including all interactions contributing to the potential energy) 
completely define Bohmian mechanics. This deterministic theory of particles in 
motion accounts for all the phenomena of nonrelativistic quantum mechanics, from 
interference effects to spectral lines (Bohm 1952: 175–178) to spin (Bell 1964: 10). It 
does so in an entirely ordinary manner, as we explain in the following sections. For a 
scalar wave function, describing particles without spin, the form of the guiding 
equation above is a little more complicated than necessary, since the complex 
conjugate of the wave function, which appears in the numerator and the denominator, 
cancels out. If one looks for an evolution equation for the configuration compatible 
with the space-time symmetries of Schrödinger’s equation, one almost immediately 
arrives at the guiding equation in this simpler form as the simplest possibility. 
However, the form above has two advantages: First, it makes sense for particles with 
spin—and, in fact, Bohmian mechanics without further ado accounts for all the 
apparently paradoxical quantum phenomena associated with spin. Secondly, and this 
is crucial to the fact that Bohmian mechanics is empirically equivalent to orthodox 
quantum theory, the right hand side of the guiding equation is J/ϱ, the ratio of the 
quantum probability current to the quantum probability density. This shows that it 
should require no imagination whatsoever to guess the guiding equation from 
Schrödinger’s equation, provided one is looking for one, since the classical formula 
for current is density times velocity. Moreover, it follows from the quantum 
continuity equation ∂ϱ/∂t+divJ=0, an immediate consequence of Schrödinger’s 
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equation, that if at some time (say the initial time) the configuration Q of our system 
is random, with distribution given by |ψ|2=ψ ψ∗
, this will always be true (provided the system does not interact with its environment).

This demonstrates that it is wrong to claim that the predictions of quantum theory are 
incompatible with the existence of hidden variables, with an underlying deterministic 
model in which quantum randomness arises from averaging over ignorance. Bohmian 
mechanics provides us with just such a model: For any quantum experiment we 
merely take as the relevant Bohmian system the combined system, including the 
system upon which the experiment is performed as well as all the measuring 
instruments and other devices used to perform the experiment (together with all other 
systems with which these have significant interaction over the course of the 
experiment). We then obtain the “hidden variables” model by regarding the initial 
configuration of this big system as random in the usual quantum mechanical way, 
with distribution given by |ψ|2

. The guiding equation for the big system then transforms the initial configuration into
the final configuration at the conclusion of the experiment. It then follows that this 
final configuration of the big system, including in particular the orientation of 
instrument pointers, will also be distributed in the quantum mechanical way. Thus our
deterministic Bohmian model yields the usual quantum predictions for the results of 
the experiment.
As the preceding paragraph suggests, and as we discuss in more detail later, Bohmian 
mechanics does not need any “measurement postulates” or axioms governing the 
behavior of other “observables”. Any such axioms would be at best redundant and 
could be inconsistent. Besides the guiding equation, there are other velocity formulas 
with nice properties, including Galilean symmetry, and yielding theories that are 
empirically equivalent to orthodox quantum theory—and to Bohmian mechanics 
(Deotto & Ghirardi 1998). The Bohmian choice is arguably the simplest. Moreover, 
Wiseman (2007) has shown that it is the Bohmian velocity formula, given by the 
guiding equation, that, according to orthodox quantum theory, would be found in a 
“weak measurement” of the velocity of a particle. (Marian, Zanghì, and Oriols 2016 
have recently proposed an explicit procedure for performing such a measurement.) 
And, somewhat paradoxically, it can be shown (Dürr, Goldstein, & Zanghì 2009) that 
according to Bohmian mechanics such a measurement is indeed a genuine 
measurement of the particle’s velocity—despite the existence of empirically 
equivalent velocity formulas! Similarly, weak measurements could be used to 
measure trajectories.

In fact, quite recently Kocsis et al. (2011) have used weak measurements to 
reconstruct the trajectories for single photons “as they undergo two-slit interference”, 
finding “those predicted in the Bohm-de Broglie interpretation of quantum 
mechanics”. And Mahler et al. 2016 have experimentally found, using weak 
measurements, “Bohmian trajectories” for entangled photons, illustrating quantum 
nonlocality and the phenomenon of “surreal Bohmian trajectories”.
For a single particle the guiding equation defines the motion of a particle guided by a 
wave in physical 3-dimensional space. One might expect that similar motions might 
arise classically. Couder & Fort (2006) have shown, by investigating interference-like
phenomena in the motion of bouncing oil droplets in a fluid, that this is indeed so. 
Bush (2015) has further explored this sort of possibility for the emergence of a 
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Bohmian version of quantum mechanics from something like classical fluid 
dynamics. A serious obstacle to the success of such a program is the quantum 
entanglement and nonlocality characteristic of many-particle quantum systems. The 
“many interacting worlds” approach of Hall, Deckert, & Wiseman (2014), 
independently advanced by Sebens (2015), retains particle trajectories but attempts to 
do away with a wave-function at the level of fundamental ontology. What takes its 
place is a large number of trajectories of points in configuration space, each 
corresponding to the motions of a finite number of particles in physical space 
regarded as describing a a world in its own right. These interact in such a way as to 
mimic trajectories guided by a wave function: a coarse-grained density of worlds 
takes the place of |ψ|2 The velocities of the world-particles are required to at least 
approximately be related to their configurations via some smooth function on 
configuration space. This condition would be a rather surprising one for the sorts of 
large systems studied in statistical mechanics. Even more unmotivated from a 
classical perspective, the velocity function must be the gradient of a multivalued 
function that obeys a Bohr-Sommerfeld-like quantum condition.
We stress that Bohmian mechanics should be regarded as a theory in its own right. Its 
viability does not depend on its being derivable from some other theory, classical or 
otherwise.

5. The Quantum Potential

Bohmian mechanics as presented here is a first-order theory, in which it is the 
velocity, the rate of change of position, that is fundamental. It is this quantity, given 
by the guiding equation, that the theory specifies directly and simply. The second-
order (Newtonian) concepts of acceleration and force, work and energy do not play 
any fundamental role. Bohm, however, did not regard his theory in this way. He 
regarded it, fundamentally, as a second-order theory, describing particles moving 
under the influence of forces, among which, however, is a force stemming from a 
“quantum potential”. In his 1952 hidden-variables paper, Bohm arrived at his theory 
by writing the wave function in the polar form ψ=R exp(iS/ℏ), where S and R are real,
with R nonnegative, and rewriting Schrödinger’s equation in terms of these new 
variables to obtain a pair of coupled evolution equations: the continuity equation for 
ϱ=R2 and a modified Hamilton-Jacobi equation for S. This differs from the usual 
classical Hamilton-Jacobi equation only by the appearance of an extra term, the 
quantum potential U=−∑k(ℏ2/2mk)(∂2kR/R),
alongside the classical potential energy term. Bohm then used the modified Hamilton-
Jacobi equation to define particle trajectories just as one does for the classical 
Hamilton-Jacobi equation, that is, by identifying ∂kSwith mkvk, i.e., by setting 
dQk/dt=∂kS/mk.

This is equivalent to the guiding equation for particles without spin. [In this form the 
(pre-Schrödinger equation) de Broglie relation p=ℏk
, as well as by the eikonal equation of classical optics, already suggest the guiding 
equation.] The resulting motion is precisely what would be obtained classically if the 
particles were acted upon by the force generated by the quantum potential, in addition
to the usual forces.
The quantum potential formulation of the de Broglie-Bohm theory is still fairly 
widely used. For example, the monographs by Bohm and Hiley and by Holland 
present the theory in this way. And regardless of whether or not we regard the 
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quantum potential as fundamental, it can in fact be quite useful. In order to see most 
clearly that Newtonian mechanics should be expected to emerge from Bohmian 
mechanics in the classical limit, it is convenient to transform the theory into Bohm’s 
Hamilton-Jacobi form. Then the (size of the) quantum potential provides a measure of
the deviation of Bohmian mechanics from its classical approximation. Moreover, the 
quantum potential is also useful for developing approximation schemes for solutions 
to Schrödinger’s equation (Nerukh & Frederick 2000).

However, Bohm’s rewriting of Schrödinger’s equation in terms of variables that seem
interpretable in classical terms is not without a cost. The most obvious is an increase 
in complexity: Schrödinger’s equation is rather simple, and it is linear, whereas the 
modified Hamilton-Jacobi equation is somewhat complicated, and highly nonlinear. 
Moreover the latter, since it involves R
, requires the continuity equation for its closure. The quantum potential itself is 
neither simple nor natural. Even to Bohm it seemed “rather strange and arbitrary” 
(Bohm 1980: 80). And it is not very satisfying to think of the quantum revolution as 
amounting to the insight that nature is classical after all, except that there is in nature 
what appears to be a rather ad hoc additional force term, the one arising from the 
quantum potential. The artificiality that the quantum potential suggests is the price 
one pays for casting a highly nonclassical theory into a classical mold.
Moreover, the connection between classical mechanics and Bohmian mechanics that 
the quantum potential suggests is rather misleading. Bohmian mechanics is not simply
classical mechanics with an additional force term. In Bohmian mechanics the 
velocities are not independent of positions, as they are classically, but are constrained 
by the guiding equation. (In classical Hamilton-Jacobi theory we also have this 
equation for the velocity, but there the Hamilton-Jacobi function. Scan be entirely 
eliminated and the description in terms of S simplified and reduced to a finite-
dimensional description, with basic variables the positions and the (unconstrained) 
momenta of all the particles, given by Hamilton’s or Newton’s equations.)

Arguably, the most serious flaw in the quantum potential formulation of Bohmian 
mechanics is that it gives a completely false impression of the lengths to which we 
must go in order to convert orthodox quantum theory into something more rational. 
The quantum potential suggests, as has often been stated, that transforming 
Schrödinger’s equation into a theory that can account in “realistic” terms for quantum 
phenomena, many of which are dramatically nonlocal, requires adding to the theory a 
complicated quantum potential of a grossly nonlocal character. It should be clear that 
this view is inappropriate. After all, the quantum potential need not even be 
mentioned in the formulation of Bohmian mechanics, and it in any case merely 
reflects the wave function, which Bohmian mechanics shares with orthodox quantum 
theory.

6. The Two-Slit Experiment

According to Richard Feynman, the two-slit experiment for electrons is a 
phenomenon which is impossible, absolutely impossible, to explain in any classical 
way, and which has in it the heart of quantum mechanics. In reality it contains the 
only mystery. (Feynman, Leighton, & Sands 1963: 37–2) This experiment has been 
designed to contain all of the mystery of quantum mechanics, to put you up against 
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the paradoxes and mysteries and peculiarities of nature one hundred per cent. 
(Feynman 1967: 130)
As to the question, How does it really work? What machinery is actually producing 
this thing? Nobody knows any machinery. Nobody can give you a deeper explanation 
of this phenomenon than I have given; that is, a description of it. (Feynman 1967: 
145) But Bohmian mechanics is just such a deeper explanation. It resolves in a rather 
straightforward manner the dilemma of the appearance of both particle and wave 
properties in one and the same phenomenon: Bohmian mechanics is a theory of 
motion describing a particle (or particles) guided by a wave. Here we have a family of
Bohmian trajectories for the two-slit experiment.

Figure 1: An ensemble of trajectories for the two-slit experiment, uniform in the slits.
(adapted by Gernot Bauer from Philippidis, Dewdney, & Hiley 1979: 23, fig. 3)
While each trajectory passes through only one slit, the wave passes through both; the 
interference profile that therefore develops in the wave generates a similar pattern in 
the trajectories guided by the wave.

Compare Feynman’s presentation with Bell’s:
Is it not clear from the smallness of the scintillation on the screen that we have to do 
with a particle? And is it not clear, from the diffraction and interference patterns, that 
the motion of the particle is directed by a wave? De Broglie showed in detail how the 
motion of a particle, passing through just one of two holes in screen, could be 
influenced by waves propagating through both holes. And so influenced that the 
particle does not go where the waves cancel out, but is attracted to where they 
cooperate. This idea seems to me so natural and simple, to resolve the wave-particle 
dilemma in such a clear and ordinary way, that it is a great mystery to me that it was 
so generally ignored. (Bell [1989] 1987c: 191)
Perhaps the most puzzling aspect of the two-slit experiment is the following: If, by 
any means whatsoever, it is possible to determine the slit through which the particle 
passes, the interference pattern will be destroyed. This dramatic effect of observation 
is, in fact, a simple consequence of Bohmian mechanics. To see this, one must 
consider the meaning of determining the slit through which the particle passes. This 
must involve interaction with another system that the Bohmian mechanical analysis 
must include.
The destruction of interference is related, naturally enough, to the Bohmian 
mechanical analysis of quantum measurement (Bohm 1952). It occurs via the 
mechanism that in Bohmian mechanics leads to the “collapse of the wave function”.
For an accessible presentation of the behavior of Bohmian trajectories in scattering 
and tunneling phenomena, see Norsen 2013.

7. The Measurement Problem

The measurement problem is the most commonly cited of the conceptual difficulties 
that plague quantum mechanics. (It amounts, more or less, to the paradox of 
Schrödinger’s cat.) Indeed, for many physicists the measurement problem is not 
merely one conceptual difficulty of quantum mechanics; it is the conceptual difficulty.
The problem is as follows. Suppose that the wave function of any individual system 
provides a complete description of that system. When we analyze the process of 
measurement in quantum mechanical terms, we find that the after-measurement wave 
function for system and apparatus that arises from Schrödinger’s equation for the 
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composite system typically involves a superposition over terms corresponding to what
we would like to regard as the various possible results of the measurement—e.g., 
different pointer orientations. In this description of the after-measurement situation it 
is difficult to discern the actual result of the measurement—e.g., some specific pointer
orientation. But the whole point of quantum theory, and the reason we should believe 
in it, is that it is supposed to provide a compelling, or at least an efficient, account of 
our observations, that is, of the outcomes of measurements. In short, the measurement
problem is this: Quantum theory implies that measurements typically fail to have 
outcomes of the sort the theory was created to explain.

In contrast, if we, like Einstein, regard the description provided by the wave function 
as incomplete, the measurement problem vanishes: There is no measurement problem 
with a theory or interpretation in which, as in Bohmian mechanics, the description of 
the after-measurement situation includes, in addition to the wave function, at least the 
values of the variables that register the result. In Bohmian mechanics pointers always 
point. Often, the measurement problem is expressed a little differently. Textbook 
quantum theory provides two rules for the evolution of the wave function of a 
quantum system: A deterministic dynamics given by Schrödinger’s equation when the
system is not being “measured” or observed, and a random collapse of the wave 
function to an eigenstate of the “measured observable” when it is. However, the 
objection continues, textbook quantum theory does not explain how to reconcile these
two apparently incompatible rules.
That this formulation of the measurement problem and the preceding one are more or 
less equivalent should be reasonably clear: If a wave function provides a complete 
description of the after-measurement situation, the outcome of the measurement must 
correspond to a wave function that describes the actual result, that is, a “collapsed” 
wave function. Hence the collapse rule. But it is difficult to take seriously the idea 
that different laws than those governing all other interactions should govern those 
interactions between system and apparatus that we happen to call measurements. 
Hence the apparent incompatibility of the two rules.

The second formulation of the measurement problem, though basically equivalent to 
the first, raises an important question: Can Bohmian mechanics itself reconcile these 
two dynamical rules? How does Bohmian mechanics justify the use of the “collapsed”
wave function instead of the original one? This question was answered in Bohm’s 
first papers on Bohmian mechanics (Bohm 1952: Part I, Section 7 and Part II, Section 
2). What would nowadays be called effects of decoherence, which interaction with the
environment (air molecules, cosmic rays, internal microscopic degrees of freedom, 
etc.) produces, make difficult the development of significant overlap between the 
component of the after-measurement wave function corresponding to the actual result 
of the measurement and the other components of the after-measurement wave 
function. (This overlap refers to the configuration space of the very large system that 
includes all systems with which the original system and apparatus come into 
interaction.) But without such overlap that component all by itself generates to a high 
degree of accuracy the future evolution of the configuration of the system and 
apparatus. The replacement is thus justified as a practical matter (see also Dürr, 
Goldstein & Zanghì 1992a: Section 5).

Many proponents of orthodox quantum theory believe that decoherence somehow 
resolves the measurement problem itself. It is not easy to understand this belief. In the
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first formulation of the measurement problem, nothing prevents us from including in 
the apparatus all sources of decoherence. But then decoherence can no longer be in 
any way relevant to the argument. Be that as it may, Bohm (1952) gave one of the 
best descriptions of the mechanisms of decoherence, though he did not use the word 
itself. He recognized its importance several decades before it became fashionable. 
(See also the encyclopedia entry on The Role of Decoherence in Quantum 
Mechanics.)

8. The Collapse of the Wave Function

In the previous section we indicated that collapse of the wave function can be 
regarded in Bohmian mechanics as a pragmatic affair. However, there is a sense in 
which the collapse of the wave function in Bohmian mechanics is more than a matter 
of convenience. If we focus on the appropriate notion of the wave function, not of the 
composite of system and apparatus—which strictly speaking remains a superposition 
if the composite is treated as closed during the measurement process—but of the 
system itself, we find that for Bohmian mechanics this does indeed collapse, precisely
as the quantum formalism says. The key element here is the notion of the conditional 
wave function of a subsystem of a larger system, which we describe briefly in this 
section and that Dürr, Goldstein, & Zanghì 1992a: Section 5, discuss in some detail, 
together with the related notion of the effective wave function.
For the evolution of the wave function, Bohmian mechanics is formulated in terms of 
Schrödinger’s equation alone. Nonetheless the textbook collapse rule is a 
consequence of the Bohmian dynamics. To appreciate this one should first note that, 
since observation implies interaction, a system under observation cannot be a closed 
system but rather must be a subsystem of a larger closed system, which we may take 
to be the entire universe, or any smaller more or less closed system that contains the 
system to be observed, the subsystem. The configuration Q
of this larger system naturally splits into X, the configuration of the subsystem, and Y,
the configuration of the environment of the subsystem.
Suppose the larger system has wave function Ψ=Ψ(q)=Ψ(x,y). According to Bohmian 
mechanics, the larger system is then completely described by Ψ, evolving according 
to Schrödinger’s equation, together with X and Y. The question then arises—and it is 
a critical question—as to what should be meant by the wave function of the 
subsystem.
There is a rather obvious answer for this, a natural function of x that suitably 
incorporates the objective structure at hand, namely the conditional wave function 
ψ(x)=Ψ(x,Y)
obtained by plugging the actual configuration of the environment into the wave 
function of the larger system. (This definition is appropriate only for scalar wave 
functions; for particles with spin the situation would be a little more complicated.) It 
then follows immediately that the configuration of the subsystem obeys the guiding 
equation with the conditional wave function on its right-hand side.
Moreover, taking into account the way that the conditional wave function depends 
upon time t
ψt(x)=Ψt(x,Yt) via the time dependence of Y as well as that of Ψ, it is not difficult to 
see (Dürr, Goldstein, & Zanghì 1992a) the following two things about the evolution 
of the conditional wave: First, that it obeys Schrödinger’s equation for the subsystem 
when that system is suitably decoupled from its environment. Part of what is meant by
this decoupling is that Ψ
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has a special form, what might be called an effective product form (similar to but 
more general than the superposition produced in an “ideal quantum measurement”), in
which case the conditional wave function of the subsystem is also called its effective 
wave function. Second, using the quantum equilibrium hypothesis, that it randomly 
collapses according to the usual quantum mechanical rules under precisely those 
conditions on the interaction between the subsystem and its environment that define 
an ideal quantum measurement.

It is perhaps worth noting that orthodox quantum theory lacks the resources that make
it possible to define the conditional wave function, namely, the actual configuration Y
of the environment. Indeed, from an orthodox point of view what should be meant by 
the wave function of a subsystem is entirely obscure.

9. Quantum Randomness

According to the quantum formalism, for a system with wave function ψ the 
probability density for finding its configuration to be q is |ψ(q)|2. To the extent that 
the results of measurement are registered configurationally, at least potentially, it 
follows that the predictions of Bohmian mechanics for the results of measurement 
must agree with those of orthodox quantum theory (assuming the same Schrödinger 
equation for both) provided that it is somehow true for Bohmian mechanics that 
configurations are random, with distribution given by the quantum equilibrium 
distribution |ψ(q)|2. Now the status and justification of this quantum equilibrium 
hypothesis is a rather delicate matter, one that has been explored in considerable detail
(Dürr, Goldstein, & Zanghì 1992a). Here are a few relevant points.

It is nowadays a rather familiar fact that dynamical systems quite generally give rise 
to behavior of a statistical character, with the statistics given by the (or a) stationary 
probability distribution for the dynamics. So it is with Bohmian mechanics, except 
that for the Bohmian system stationarity is not quite the right concept. Rather it is the 
notion of equivariance that is relevant. A probability distribution on configuration 
space ϱψ, depending upon the wave function ψ, is equivariant if (ϱψ)t=ϱψt where the 
dependence on t on the right arises from Schrödinger’s equation and on the left from 
the evolution on probability distributions arising from the flow that the guiding 
equation induces. Thus equivariance expresses the mutual compatibility, relative to 
ϱψ, of the Schrödinger evolution of the wave function and the Bohmian motion of the 
configuration. It is an immediate consequence of the guiding equation and the 
quantum continuity equation that ϱψ=|ψ(q)|2 is equivariant. (It can be shown in fact 
that this is more or less the only equivariant possibility that is suitably local 
(Goldstein & Struyve 2007).)
In trying to understand the status in Bohmian mechanics of the quantum equilibrium 
distribution, it is perhaps helpful to think of quantum equilibrium, ϱ=|ψ|2 as roughly 
analogous to (classical)
thermodynamic equilibrium, ϱ=exp(−H/kT)/Z, the probability distribution of the 
phase-space point of a system in equilibrium at temperature T. (Z is a normalization 
constant called the partition function and k is Boltzmann’s constant.) This analogy has
several facets: In both cases the probability distributions are naturally associated with 
their respective dynamical systems. In particular, these distributions are stationary or, 
what amounts to the same thing within the framework of Bohmian mechanics, 
equivariant. In both cases it seems natural to try to justify these equilibrium 
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distributions by means of mixing-type, convergence-to-equilibrium arguments (Bohm
1953; Valentini & Westman 2005). It has been argued, however, that in both cases the
ultimate justification for these probability distributions must be in terms of statistical 
patterns that ensembles of actual subsystems within a typical individual universe 
exhibit (Bell 1981b, reprinted 1987c: 129; Dürr, Goldstein, & Zanghì 1992a). In both 
cases the status of, and justification for, equilibrium distributions is still controversial.

It is also perhaps worth noting that the typicality-grounded account of quantum 
randomness in Bohmian mechanics is extremely similar to Everett’s account (Everett 
1957) of quantum randomness for “many worlds”, despite the huge metaphysical 
differences that exist between these two versions of quantum theory. It can be shown 
(Dürr, Goldstein, & Zanghì 1992a) that probabilities for positions given by the 
quantum equilibrium distribution emerge naturally from an analysis of “equilibrium” 
for the deterministic dynamical system that Bohmian mechanics defines, much as the 
Maxwellian velocity distribution emerges from an analysis of classical 
thermodynamic equilibrium. (For more on the thermodynamic side of the analogy see 
Goldstein 2001.) Thus with Bohmian mechanics the statistical description in quantum 
theory indeed takes, as Einstein anticipated, “an approximately analogous position to 
the statistical mechanics within the framework of classical mechanics”.

10. Quantum Observables

Orthodox quantum theory supplies us with probabilities not merely for positions but 
for a huge class of quantum observables. It might thus appear that it is a much richer 
theory than Bohmian mechanics, which seems exclusively concerned with positions. 
Appearances are, however, misleading. In this regard, as with so much else in the 
foundations of quantum mechanics, Bell made the crucial observation:

[I]n physics the only observations we must consider are position observations, if only 
the positions of instrument pointers. It is a great merit of the de Broglie-Bohm picture 
to force us to consider this fact. If you make axioms, rather than definitions and 
theorems, about the “measurement” of anything else, then you commit redundancy 
and risk inconsistency. (Bell 1982, reprinted 1987c: 166)
Consider classical mechanics first. The observables are functions on phase space, 
functions of the positions and momenta of the particles. The axioms governing the 
behavior of the basic observables—Newton’s equations for the positions or 
Hamilton’s for positions and momenta—define the theory. What would be the point 
of making additional axioms, for other observables? After all, the behavior of the 
basic observables entirely determines the behavior of any observable. For example, 
for classical mechanics, the principle of the conservation of energy is a theorem, not 
an axiom.
The situation might seem to differ in quantum mechanics, as usually construed. Here 
there is no small set of basic observables having the property that all other 
observables are functions of them. Moreover, no observables at all are taken seriously
as describing objective properties, as actually having values whether or not they are or
have been measured. Rather, all talk of observables in quantum mechanics is 
supposed to be understood as talk about the measurement of the observables.

But if this is so, the situation with regard to other observables in quantum mechanics 
is not really that different from that in classical mechanics. Whatever quantum 
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mechanics means by the measurement of (the values of) observables—that, we are 
urged to believe, don’t actually have values—must at least refer to some experiment 
involving interaction between the “measured” system and a “measuring” apparatus 
leading to a recognizable result, as given potentially by, say, a pointer orientation. But
then if some axioms suffice for the behavior of pointer orientations (at least when they
are observed), rules about the measurement of other observables must be theorems, 
following from those axioms, not additional axioms.
It should be clear from the discussion towards the end of Section 4 and at the 
beginning of Section 9 that, assuming the quantum equilibrium hypothesis, any 
analysis of the measurement of a quantum observable for orthodox quantum theory—
whatever it is taken to mean and however the corresponding experiment is performed
—provides ipso facto at least as adequate an account for Bohmian mechanics. The 
only part of orthodox quantum theory relevant to the analysis is the Schrödinger 
evolution, and it shares this with Bohmian mechanics. The main difference between 
them is that orthodox quantum theory encounters the measurement problem before it 
reaches a satisfactory conclusion while Bohmian mechanics does not. This difference 
stems of course from what Bohmian mechanics adds to orthodox quantum theory: 
actual configurations.

The rest of this section will discuss the significance of quantum observables for 
Bohmian mechanics. (It follows from what has been said in the three preceding 
paragraphs that what we conclude here about quantum observables for Bohmian 
mechanics holds for orthodox quantum theory as well.)
Bohmian mechanics yields a natural association between experiments and so-called 
generalized observables, given by positive-operator-valued measures (Davies 1976), 
or POVMs, O(dz)
, on the value spaces for the results of the experiments (Berndl, Daumer, et al. 1995). 
This association is such that the probability distribution of the result Z of an 
experiment, when performed upon a system with wave function ψ, is given by ψ|⟨
O(dz)ψ  (where |  is the usual inner product between quantum state vectors).⟩ ⟨⟩
Moreover, this conclusion is follows immediately from the very meaning of an 
experiment from a Bohmian perspective: a coupling of system to apparatus leading to 
a result Z
that is a function of the final configuration of the total system, e.g., the orientation of a
pointer. Analyzed in Bohmian mechanical terms, the experiment defines a map from 
the initial wave function of the system to the distribution of the result. It follows 
directly from the structure of Bohmian mechanics, and from the fact that the quantum 
equilibrium distribution is quadratic in the wave function, that this map is bilinear (or,
more precisely, sesquilinear, in that its dependence on one factor of the wave function
is antilinear, involving complex conjugation, rather than linear). Such a map is 
equivalent to a POVM.

The simplest example of a POVM is a standard quantum observable, corresponding to
a self-adjoint operator A
on the Hilbert space of quantum states (i.e., wave functions). For Bohmian mechanics,
more or less every “measurement-like” experiment is associated with this special kind
of POVM. The familiar quantum measurement axiom that the distribution of the 
result of the “measurement of the observable A” is given by the spectral measure for 
A
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relative to the wave function (in the very simplest cases just the absolute squares of 
the so-called probability amplitudes) is thus obtained.
For various reasons, after the discovery of quantum mechanics it quickly became 
almost universal to speak of an experiment associated with an operator A
in the manner just sketched as a measurement of the observable A
—as if the operator somehow corresponded to a property of the system that the 
experiment in some sense measures. It has been argued that this assumption, which 
has been called naive realism about operators, has been a source of considerable 
confusion about the meaning and implications of quantum theory (Daumer et al. 
1997a).

11. Spin

The case of spin illustrates nicely both the way Bohmian mechanics treats non-
configurational quantum observables, and some of the difficulties that the naive 
realism about operators mentioned above causes.
Spin is the canonical quantum observable that has no classical counterpart, reputedly 
impossible to grasp in a nonquantum way. The difficulty is not quite that spin is 
quantized in the sense that its allowable values form a discrete set (for a spin-1/2 
particle, ±ℏ/2
). Energy too may be quantized in this sense. Nor is it precisely that the components 
of spin in the different directions fail to commute—and so cannot be simultaneously 
discussed, measured, imagined, or whatever it is that we are advised not to do with 
noncommuting observables. Rather the problem is that there is no ordinary 
(nonquantum) quantity which, like the spin observable, is a 3-vector and which also is
such that its components in all possible directions belong to the same discrete set. The
problem, in other words, is that the usual vector relationships among the various 
components of the spin vector are incompatible with the quantization conditions on 
the values of these components.
For a particle of spin-1 the problem is even more severe. The components of spin in 
different directions aren’t simultaneously measurable. Thus, the impossible vector 
relationships for the spin components of a quantum particle are not observable. Bell 
(1966), and, independently, Simon Kochen and Ernst Specker (1967) showed that for 
a spin-1 particle the squares of the spin components in the various directions satisfy, 
according to quantum theory, a collection of relationships, each individually 
observable, that taken together are impossible: the relationships are incompatible with
the idea that measurements of these observables merely reveal their preexisting values
rather than creating them, as quantum theory urges us to believe. Many physicists and 
philosophers of physics continue to regard the Kochen-Specker Theorem as 
precluding the possibility of hidden variables.

We thus might naturally wonder how Bohmian mechanics copes with spin. But we 
have already answered this question. Bohmian mechanics makes sense for particles 
with spin, i.e., for particles whose wave functions are spinor-valued. When such 
particles are suitably directed toward Stern-Gerlach magnets, they emerge moving in 
more or less a discrete set of directions—2 possible directions for a spin-1/2 particle, 
having 2 spin components, 3 for spin-1 with 3 spin components, and so on. This 
occurs because the Stern-Gerlach magnets are so designed and oriented that a wave 
packet (a localized wave function with reasonably well defined velocity) directed 
towards the magnet will, by virtue of the Schrödinger evolution, separate into distinct 

18



packets—corresponding to the spin components of the wave function and moving in 
the discrete set of directions. The particle itself, depending upon its initial position, 
ends up in one of the packets moving in one of the directions.

The probability distribution for the result of such a Stern-Gerlach experiment can be 
conveniently expressed in terms of the quantum mechanical spin operators—for a 
spin-1/2 particle given by certain 2 by 2 matrices called the Pauli spin matrices—in 
the manner alluded to above. From a Bohmian perspective there is no hint of paradox 
in any of this—unless we assume that the spin operators correspond to genuine 
properties of the particles.
For further discussion and more detailed examples of the Bohmian perspective on 
spin see Norsen 2014.

12. Contextuality

The Kochen-Specker Theorem, the earlier theorem of Gleason (Gleason 1957 and 
Bell 1966), and other no-hidden-variables results, including Bell’s inequality (Bell 
1964), show that any hidden-variables formulation of quantum mechanics must be 
contextual. It must violate the noncontextuality assumption “that measurement of an 
observable must yield the same value independently of what other measurements may
be made simultaneously” (1964, reprinted 1987c: 9). To many physicists and 
philosophers of science contextuality seems too great a price to pay for the rather 
modest benefits—largely psychological, so they would say—that hidden variables 
provide.

Even many Bohmians suggest that contextuality departs significantly from classical 
principles. For example, Bohm and Hiley write that
The context dependence of results of measurements is a further indication of how our 
interpretation does not imply a simple return to the basic principles of classical 
physics. (1993: 100)
However, to understand contextuality in Bohmian mechanics almost nothing needs to 
be explained. Consider an operator A
that commutes with operators B and C (which however don’t commute with each 
other). What is often called the “result for A” in an experiment for “measuring A 
together with B” usually disagrees with the “result for A” in an experiment for 
“measuring A together with C”. This is because these experiments differ and different
experiments usually have different results. The misleading reference to measurement, 
which suggests that a pre-existing value of A is being revealed, makes contextuality 
seem more than it is.
Seen properly, contextuality amounts to little more than the rather unremarkable 
observation that results of experiments should depend upon how they are performed, 
even when the experiments are associated with the same operator in the manner 
alluded to above. David Albert (1992: 153) has given a particularly simple and 
striking example of this dependence for Stern-Gerlach experiments “measuring” the 
z-component of spin. Reversing the polarity in a magnet for “measuring” the z-
component of spin while keeping the same geometry yields another magnet for 
“measuring” the z-component of spin. The use of one or the other of these two 
magnets will often lead to opposite conclusions about the “value of the z-component 
of spin” prior to the “measurement” (for the same initial value of the position of the 
particle).
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As Bell insists:
A final moral concerns terminology. Why did such serious people take so seriously 
axioms which now seem so arbitrary? I suspect that they were misled by the 
pernicious misuse of the word “measurement” in contemporary theory. This word 
very strongly suggests the ascertaining of some preexisting property of some thing, 
any instrument involved playing a purely passive role. Quantum experiments are just 
not like that, as we learned especially from Bohr. The results have to be regarded as 
the joint product of “system” and “apparatus”, the complete experimental set-up. But 
the misuse of the word “measurement” makes it easy to forget this and then to expect 
that the “results of measurements” should obey some simple logic in which the 
apparatus is not mentioned. The resulting difficulties soon show that any such logic is 
not ordinary logic. It is my impression that the whole vast subject of “Quantum 
Logic” has arisen in this way from the misuse of a word. I am convinced that the word
“measurement” has now been so abused that the field would be significantly advanced
by banning its use altogether, in favour for example of the word “experiment”. (Bell 
1982, reprinted 1987c: 166)

13. Nonlocality

Bohmian mechanics is manifestly nonlocal. The velocity, as expressed in the guiding 
equation, of any particle of a many-particle system will typically depend upon the 
positions of the other, possibly distant, particles whenever the wave function of the 
system is entangled, i.e., not a product of single-particle wave functions. This is true, 
for example, for the EPR-Bohm wave function, describing a pair of spin-1/2 particles 
in the singlet state, that Bell and many others analyzed. Thus Bohmian mechanics 
makes explicit the most dramatic feature of quantum theory: quantum nonlocality, as 
discussed in Section 2.

It should be emphasized that the nonlocality of Bohmian mechanics derives solely 
from the nonlocality, discussed in Section 2, built into the structure of standard 
quantum theory. This nonlocality originates from a wave function on configuration 
space, an abstraction which, roughly speaking, combines—or binds—distant particles 
into a single irreducible reality. As Bell has stressed,
That the guiding wave, in the general case, propagates not in ordinary three-space but 
in a multidimensional-configuration space is the origin of the notorious “nonlocality” 
of quantum mechanics. It is a merit of the de Broglie-Bohm version to bring this out 
so explicitly that it cannot be ignored. (Bell 1980, reprinted 1987c: 115)
Thus the nonlocal velocity relation in the guiding equation is but one aspect of the 
nonlocality of Bohmian mechanics. There is also the nonlocality, or nonseparability, 
implicit in the wave function itself, which is present even without the structure—
actual configurations—that Bohmian mechanics adds to orthodox quantum theory. As
Bell has shown, using the connection between the wave function and the predictions 
of quantum theory about experimental results, this nonlocality cannot easily be 
eliminated (see Section 2).

The nonlocality of Bohmian mechanics can be appreciated perhaps most efficiently, 
in all its aspects, by focusing on the conditional wave function. Suppose, for example,
that in an EPR-Bohm experiment particle 1 passes through its Stern-Gerlach magnet 
before particle 2 arrives at its magnet. Then the orientation of the Stern-Gerlach 
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magnet for particle 1 will significantly affect the conditional wave function of particle
2: If the Stern-Gerlach magnet for particle 1 is oriented so as to “measure the z
-component of spin”, then after particle 1 has passed through its magnet the 
conditional wave function of particle 2 will be an eigenvector (or eigenstate) of the z
-component of spin (in fact, belonging to the eigenvalue that is the negative of the one
“measured” for particle 1), and the same thing is true for any other component of spin.
You can dictate the kind of spin eigenstate produced for particle 2 by appropriately 
choosing the orientation of an arbitrarily distant magnet. As to the future behavior of 
particle 2, in particular how its magnet affects it, this of course depends very much on 
the character of its conditional wave function and hence the choice of orientation of 
the distant magnet strongly influences it.

This nonlocal effect upon the conditional wave function of particle 2 follows from 
combining the standard analysis of the evolution of the wave function in the EPR-
Bohm experiment with the definition of the conditional wave function. (For 
simplicity, we ignore permutation symmetry.) Before reaching any magnets the EPR-
Bohm wave function is a sum of two terms, corresponding to nonvanishing values for 
two of the four possible joint spin components for the two particles. Each term is a 
product of an eigenstate for a component of spin in a given direction for particle 1 
with the opposite eigenstate (i.e., belonging to the eigenvalue that is the negative of 
the eigenvalue for particle 1) for the component of spin in the same direction for 
particle 2. Moreover, by virtue of its symmetry under rotations, the EPR-Bohm wave 
function has the property that any component of spin, i.e., any direction, can be used 
in this decomposition. (This property is very interesting.)

Decomposing the EPR-Bohm wave function using the component of spin in the 
direction associated with the magnet for particle 1, the evolution of the wave function 
as particle 1 passes its magnet is easily grasped: The evolution of the sum is 
determined (using the linearity of Schrödinger’s equation) by that of its individual 
terms, and the evolution of each term by that of each of its factors. The evolution of 
the particle-1 factor leads to a displacement along the magnetic axis in the direction 
determined by the (sign of the) spin component (i.e., the eigenvalue), as described in 
the fourth paragraph of Section 11. Once this displacement has occurred (and is large 
enough) the conditional wave function for particle 2 will correspond to the term in the
sum selected by the actual position of particle 1. In particular, it will be an eigenstate 
of the component of spin “measured by” the magnet for particle 1. (For a more 
explicit and detailed discussion see Norsen 2014.)

The nonlocality of Bohmian mechanics has a remarkable feature: it is screened by 
quantum equilibrium. It is a consequence of the quantum equilibrium hypothesis that 
the nonlocal effects in Bohmian mechanics don’t yield observable consequences that 
can be controlled—we can’t use them to send instantaneous messages. This follows 
from the fact that, given the quantum equilibrium hypothesis, the observable 
consequences of Bohmian mechanics are the same as those of orthodox quantum 
theory, for which instantaneous communication based on quantum nonlocality is 
impossible (see Eberhard 1978). Valentini (1991) emphasizes the importance of 
quantum equilibrium for obscuring the nonlocality of Bohmian mechanics. (Valentini 
[2010a] has also suggested the possibility of searching for and exploiting quantum 
non-equilibrium. However, in contrast with thermodynamic non-equilibrium, we have
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at present no idea what quantum non-equilibrium, should it exist, would look like, 
despite claims and arguments to the contrary.)

14. Lorentz Invariance

Like nonrelativistic quantum theory, of which it is a version, Bohmian mechanics and 
special relativity, a central principle of physics, are not compatible: Bohmian 
mechanics is not Lorentz invariant. Nor can it easily be modified to accommodate 
Lorentz invariance. Configurations, defined by the simultaneous positions of all 
particles, play too crucial a role in its formulation, with the guiding equation defining 
an evolution on configuration space. (Lorentz invariant extensions of Bohmian 
mechanics for a single particle, described by the Dirac equation (Bohm & Hiley 1993;
Dürr et al. 1999) or the Klein-Gordon equation (Berndl et al. 1996; Nikolic 2005), can
easily be achieved, though for a Klein-Gordon particle there are some interesting 
subtleties, corresponding to what might seem to be a particle traveling backwards in 
time.)

This difficulty with Lorentz invariance and the nonlocality in Bohmian mechanics are 
closely related. Since quantum theory itself, by virtue merely of the character of its 
predictions concerning EPR-Bohm correlations, is irreducibly nonlocal (see Section 
2), one might expect considerable difficulty with the Lorentz invariance of orthodox 
quantum theory as well with Bohmian mechanics. For example, the collapse rule of 
textbook quantum theory blatantly violates Lorentz invariance. As a matter of fact, the
intrinsic nonlocality of quantum theory presents formidable difficulties for the 
development of any (many-particle) Lorentz invariant formulation that avoids the 
vagueness of orthodox quantum theory (see Maudlin 1994).
Bell made a somewhat surprising evaluation of the importance of the problem of 
Lorentz invariance. In an interview with the philosopher Renée Weber, not long 
before he died, he referred to the paradoxes of quantum mechanics and observed that 
Those paradoxes are simply disposed of by the 1952 theory of Bohm, leaving as the 
question, the question of Lorentz invariance. So one of my missions in life is to get 
people to see that if they want to talk about the problems of quantum mechanics—the 
real problems of quantum mechanics—they must be talking about Lorentz invariance.
(Interview with John Bell, in Weber 1989, Other Internet Resources)

The most common view on this issue is that a detailed description of microscopic 
quantum processes, such as would be provided by a putative extension of Bohmian 
mechanics to the relativistic domain, must violate Lorentz invariance. In this view 
Lorentz invariance in such a theory would be an emergent symmetry obeyed by our 
observations—for Bohmian mechanics a statistical consequence of quantum 
equilibrium that governs the results of quantum experiments. This is the opinion of 
Bohm and Hiley (1993), of Holland (1993), and of Valentini (1997).
However—unlike nonlocality—violating Lorentz invariance is not inevitable. It 
should be possible, it seems, to construct a fully Lorentz invariant theory that provides
a detailed description of microscopic quantum processes. One way to do this is by 
using an additional Lorentz invariant dynamical structure, for example a suitable 
time-like 4-vector field, that permits the definition of a foliation of space-time into 
space-like hypersurfaces providing a Lorentz invariant notion of “evolving 
configuration” and along which nonlocal effects are transmitted. See Dürr et al. 1999 
for a toy model. Another possibility is that a fully Lorentz invariant account of 
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quantum nonlocality can be achieved without the invocation of additional structure, 
exploiting only what is already at hand, for example, the wave function of the 
universe or light-cone structure. For more on the latter possibility, see Goldstein and 
Tumulka’s model (2003), in which they reconcile relativity and nonlocality through 
the interplay of opposite arrows of time. For a discussion of the former possibility, see
Dürr et al. 2014. In the sort of theory discussed there, the wave function of the 
universe provides a covariant prescription for the desired foliation. Such a theory 
would be clearly Lorentz invariant.

But it is not so clear that it should be regarded as relativistic.
Be that as it may, Lorentz invariant nonlocality remains somewhat enigmatic. The 
issues are extremely subtle. For example, Bell rightly would find
disturbing … the impossibility of “messages” faster than light, which follows from 
ordinary relativistic quantum mechanics in so far as it is unambiguous and adequate 
for procedures we
[emphasis added] can actually perform. The exact elucidation of concepts like 
“message” and “we”, would be a formidable challenge. (1981a, reprinted 1987c: 155)
While quantum equilibrium and the absolute uncertainty that it entails (Dürr, 
Goldstein, & Zanghì 1992a) may be of some help here, the situation remains puzzling.
15. Objections and Responses
Bohmian mechanics has never been widely accepted in the mainstream of the physics 
community. Since it is not part of the standard physics curriculum, many physicists—
probably the majority—are simply unfamiliar with the theory and how it works. 
Sometimes the theory is rejected without explicit discussion of reasons for rejection. 
One also finds objections that are based on simple misunderstandings; among these 
are claims that some no-go theorem, such as von Neumann’s theorem, the Kochen-
Specker theorem, or Bell’s theorem, shows that the theory cannot work. Such 
objections will not be dealt with here, as the reply to them will be obvious to those 
who understand the theory. In what follows only objections that are not based on 
elementary misunderstandings will be discussed.

A common objection is that Bohmian mechanics is too complicated or inelegant. To 
evaluate this objection one must compare the axioms of Bohmian mechanics with 
those of standard quantum mechanics. To Schrödinger’s equation, Bohmian 
mechanics adds the guiding equation; standard quantum mechanics instead requires 
postulates about experimental outcomes that can only be formulated in terms of a 
distinction between a quantum system and the experimental apparatus. And, as noted 
by Hilary Putnam,
In Putnam ([1965]), I rejected Bohm’s interpretation for several reasons which no 
longer seem good to me. Even today, if you look at the Wikipedia encyclopaedia on 
the Web, you will find it said that Bohm’s theory is mathematically inelegant. 
Happily, I did not give that reason in Putnam ([1965]), but in any case it is not true. 
The formula for the velocity field is extremely simple: you have the probability 
current in the theory anyway, and you take the velocity vector to be proportional to 
the current. There is nothing particularly inelegant about that; if anything, it is 
remarkably elegant! (2005: 262)

One frequent objection is that Bohmian mechanics, since it makes precisely the same 
predictions as standard quantum mechanics (insofar as the predictions of standard 
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quantum mechanics are unambiguous), is not a distinct theory but merely a 
reformulation of standard quantum theory. In this vein, Heisenberg wrote,
Bohm’s interpretation cannot be refuted by experiment, and this is true of all the 
counter-proposals in the first group. From the fundamentally “positivistic” (it would 
perhaps be better to say “purely physical”) standpoint, we are thus concerned not with
counter-proposals to the Copenhagen interpretation, but with its exact repetition in a 
different language. (Heisenberg 1955: 18)
More recently, Sir Anthony Leggett has echoed this charge. Referring to the 
measurement problem, he says that Bohmian mechanics provides “little more than 
verbal window dressing of the basic paradox” (Leggett 2005: 871). And in connection
with the double-slit experiment, he writes,
No experimental consequences are drawn from [the assumption of definite particle 
trajectories] other than the standard predictions of the QM formalism, so whether one 
regards it as a substantive resolution of the apparent paradox or as little more than a 
reformulation of it is no doubt a matter of personal taste (the present author inclines 
towards the latter point of view). (Leggett 2002: R419)

Now Bohmian mechanics and standard quantum mechanics provide clearly different 
descriptions of what is happening on the microscopic quantum level. So it is only with
a purely instrumental attitude towards scientific theories that Bohmian mechanics and 
standard quantum mechanics can possibly be regarded as different formulations of 
exactly the same theory. But even if they were, why would this be an objection to 
Bohmian mechanics? Even if they were, we should still ask which of the two 
formulations is superior. Those impressed by the “not-a-distinct-theory” objection 
presumably give considerable weight to the fact that standard quantum mechanics 
came first. Supporters of Bohmian mechanics give more weight to its greater 
simplicity and clarity.
The position of Leggett, however, is very difficult to understand. There should be no 
measurement problem for a physicist with a purely instrumentalist understanding of 
quantum mechanics. But for more than thirty years Leggett has forcefully argued that 
quantum mechanics indeed suffers from the measurement problem. For Leggett the 
problem is so serious that it has led him to suggest that quantum mechanics might fail 
on the macroscopic level. Thus Leggett is no instrumentalist, and it is hard to 
understand why he so cavalierly dismisses a theory like Bohmian mechanics that 
obviously doesn’t suffer from the measurement problem, with which he has been so 
long concerned.

Sir Roger Penrose also seems to have doubts as to whether Bohmian mechanics 
indeed resolves the measurement problem. He writes that
it seems to me that some measure of scale is indeed needed, for defining when 
classical-like behaviour begins to take over from small-scale quantum activity. In 
common with the other quantum ontologies in which no measurable deviations from 
standard quantum mechanics is expected, the point of view (e) [Bohmian mechanics] 
does not possess such a scale measure, so I do not see that it can adequately address 
the paradox of Schrödinger’s cat. (2005: 811)

But contrary to what he writes, his real concern seems to be with the emergence of 
classical behavior, and not with the measurement problem per se. With regard to this, 
we note that the Bohmian evolution of particles, which is always governed by the 
wave function and is always fundamentally quantum, turns out to be approximately 
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classical when the relevant de Broglie wave length, determined in part by the wave 
function, is much smaller than the scale on which the potential energy term in 
Schrödinger’s equation varies (see Allori et al., 2002). Under normal circumstances 
this condition will be satisfied for the center of mass motion of a macroscopic object.
It is perhaps worth mentioning that despite the empirical equivalence between 
Bohmian mechanics and orthodox quantum theory, there are a variety of experiments 
and experimental issues that don’t fit comfortably within the standard quantum 
formalism but are easily handled by Bohmian mechanics. Among these are dwell and 
tunneling times (Leavens 1996), escape times and escape positions (Daumer et al. 
1997b), scattering theory (Dürr et al., 2000), and quantum chaos (Cushing 1994; Dürr,
Goldstein, & Zanghì 1992b). Especially problematical from an orthodox perspective 
is quantum cosmology, for which the relevant quantum system is the entire universe, 
and hence there is no observer outside the system to cause collapse of the wave 
function upon measurement. In this setting Bohmian models have clarified the issue 
of the inevitability of the presence of singularities in theories of quantum gravity 
(Falciano, Pinto-Neto, & Struyve 2015). Moreover, the additional resources present in
Bohmian mechanics, in particular the notion of the conditional wave function defined 
in Section 8, have been useful for the development of approximation schemes for 
dealing with practical quantum applications (Oriols & Mompart 2012).

Another claim that has become popular in recent years is that Bohmian mechanics is 
an Everettian, or “many worlds”, interpretation in disguise (see entry on the many 
worlds interpretation of quantum mechanics for an overview of such interpretations). 
The idea is that Bohmians, like Everettians, must take the wave-function as physically
real. Moreover, since Bohmian mechanics involves no wave-function collapse (for the
wave function of the universe), all of the branches of the wave function, and not just 
the one that happens to be occupied by the actual particle configuration, persist. These
branches are those that Everettians regard as representing parallel worlds. As David 
Deutsch expresses the charge,
the “unoccupied grooves” must be physically real. Moreover they obey the same laws 
of physics as the “occupied groove” that is supposed to be “the” universe. But that is 
just another way of saying that they are universes too. … In short, pilot-wave theories 
are parallel-universes theories in a state of chronic denial. (Deutsch 1996: 225)
See Brown and Wallace (2005) for an extended version of this argument. Not 
surprisingly, Bohmians do not agree that the branches of the wave function should be 
construed as representing worlds. For one Bohmian response, see Maudlin (2010).

Other Bohmian responses have been given by Lewis (2007) and Valentini (2010b).
The claim of Deutsch, Brown, and Wallace is of a novel character that we should 
perhaps pause to examine. On the one hand, for anyone who, like Wallace, accepts the
viability of a functionalist many-worlds understanding of quantum mechanics—and in
particular accepts that it follows as a matter of functional and structural analysis that 
when the wave function develops suitable complex patterns these ipso facto describe 
what we should regard as worlds—the claim should be compelling. On the other 
hand, for those who reject the functional analysis and regard many worlds as 
ontologically inadequate (see Maudlin 2010), or who, like Vaidman (see the SEP 
entry on the many-worlds interpretation of quantum mechanics), accepts many worlds
on non-functionalist grounds, the claim should seem empty. In other words, one has 
basically to have already accepted a strong version of many worlds and already 
rejected Bohm in order to feel the force of the claim.
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Another interesting aspect of the claim is this: It seems that one could consider, at 
least as a logical possibility, a world consisting of particles moving according to some
well-defined equations of motion, and in particular according to the equations of 
Bohmian mechanics. It seems entirely implausible that there should be a logical 
problem with doing so. We should be extremely sceptical of any argument, like the 
claim of Deutsch, Brown, and Wallace, that suggests that there is. Thus what, in 
defense of many worlds, Deutsch, Brown, and Wallace present as an objection to 
Bohmian mechanics should perhaps be regarded instead as an objection to many 
worlds itself.

There is one striking feature of Bohmian mechanics that is often presented as an 
objection: in Bohmian mechanics the wave function acts upon the positions of the 
particles but, evolving as it does autonomously via Schrödinger’s equation, it is not 
acted upon by the particles. This is regarded by some Bohmians, not as an 
objectionable feature of the theory, but as an important clue about the meaning of the 
quantum-mechanical wave function. Dürr, Goldstein, & Zanghì (1997) and Goldstein 
& Teufel (2001) discuss this point and suggest that from a deeper perspective than 
afforded by standard Bohmian mechanics or quantum theory, the wave function 
should be regarded as nomological, as an object for conveniently expressing the law 
of motion somewhat analogous to the Hamiltonian in classical mechanics, and that a 
time-dependent Schrödinger-type equation, from this deeper (cosmological) 
perspective, is merely phenomenological.
Bohmian mechanics does not account for phenomena such as particle creation and 
annihilation characteristic of quantum field theory. This is not an objection to 
Bohmian mechanics but merely a recognition that quantum field theory explains a 
great deal more than does nonrelativistic quantum mechanics, whether in orthodox or 
Bohmian form. It does, however, underline the need to find an adequate, if not 
compelling, Bohmian version of quantum field theory, and of gauge theories in 
particular. Some rather tentative steps in this direction can be found in Bohm & Hiley 
1993, Holland 1993, Bell 1987b), and in some of the articles in Cushing, Fine, & 
Goldstein 1996.

A crucial issue is whether a quantum field theory is fundamentally about fields or 
particles—or something else entirely. While the most common choice is fields (see 
Struyve 2010 for an assessment of a variety of possibilities), Bell’s is particles. His 
proposal is in fact the basis of a canonical extension of Bohmian mechanics to general
quantum field theories, and these “Bell-type quantum field theories” (Dürr et al. 2004 
and 2005) describe a stochastic evolution of particles that involves particle creation 
and annihilation. (For a general discussion of this issue, and of the point and value of 
Bohmian mechanics, see the exchange of letters between Goldstein and Weinberg by 
following the link provided in the Other Internet Resources section below.)
For an accessible introduction to Bohmian mechanics see Bricmont 2016.
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